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Abstract. The exterior field of the Einstein-Rosen cylindrically symmetric metric in the 
Lyttleton-Bondi universe is considered and exact solutions are obtained in some specific 
situations. The solutions exhibit singularities on the z axis as well as at spatial infinity. 
The geodesic path of a test particle exhibits a spiral structure around the axis of symmetry. 

1. Introduction 

Lyttleton and Bondi (1959) have developed a cosmological model assuming that there 
is a continuous creation of matter due to a net imbalance of charge. This imbalance of 
charge may arise from the difference in magnitude of the charge of the proton and that 
of the electron, or from the difference in number of protons as compared to the number 
of electrons. The imbalance is of such order that it does not affect appreciably the 
conductivity of a material. Charge and matter once created are conserved. 

Further, in a uniform distribution of unionized hydrogen atoms, a hydrogen atom 
placed at a distance from the centre will experience a net force radially outwards, causing 
a diminution in the space-time density of matter. In order to keep this density invariable, 
the idea of creation of matter through the creation of charge is postulated. Since charge is 
not conserved in the strict sense, a modification of the Maxwell equations is done on the 
lines formulated by Proca. Lyttleton and Bondi (1959) have investigated the nature of 
the field in a Newtonian framework with zero electromagnetic field and nonzero poten- 
tials. The same assumptions have also been utilized by them to study the De Sitter 
metric. They have also discussed the probability of light nucleons being expelled with an 
energy comparable to that of cosmic rays. 

Burman has studied several aspects of the Lyttleton-Bondi field. One of his investi- 
gations (Burman 1971) pertains to the static spherically symmetric exterior solution. By 
use of a method suggested by Eddington (1924), he succeeded in showing that the field 
near a central body has no detectable departure from the predictions of the Schwarzs- 
child metric. In the present work we have formulated the analogous exterior problem in 
the case of the cylindrically symmetric Einstein-Rosen metric and obtained exact 
solutions, one of which is static and the other time-dependent. It has been shown that 
singularities occur on the axis of symmetry and at spatial infinity. The geodesic motion 
has been determined in the two cases and the possibility of spiral motion around the 
axis of symmetry is exhibited. It is inteiesting to note that this phenomenon may possibly 
explain the spiral structure of galactic formations. 
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2. Covariant formulation of the field 

Let A, and J, denote four-potential and current density four-vector respectively. F,, 
denotes the antisymmetric electromagnetic field tensor and q the rate of creation of 
charge per unit proper volume. To incorporate the idea of creation, the Maxwell field 
equations are modified as 

F,' = A,,'-A',, (1) 

Fr,! = J"-J.A" (2) 

JY, = q (3) 

where I is a constant and a semicolon denotes covariant differentiation. 
The energy-momentum tensor of the field is 

T,' = (F,,Fa'+~gg,'Fa~FaP)+J.(A,A' -igPVAolAa). (4) 

2.1. Solutions with zero electromagnetic j e l d  

When FPv = 0, relation ( 2 )  becomes 

J ,  = /IA, ( 5 )  

and the energy-momentum tensor of the field becomes 

T,' = %(A,A' - ig,'AaAa). (6 )  

Throughout this paper the fundamental velocity c is taken to be unity and the 
rationalized relativistic system of units is used. 

3. Space-time outside a cylindrically symmetric object 

In this section we deal with the space-time outside a cylindrically symmetric object. We 
assume that the radial outflow of charge created will not affect the dynamical character- 
istic of the metric; the mechanical effect of such radial outflow on the energy-momentum 
tensor is also assumed to be nil, and as such we can use Einstein's field equations 

G ' 3 R '-l ' R  = - x T '  , 2gP 

where k( = 8nG/c4) is a constant. 
We consider the cylindrically symmetric static line element 

ds2 = -e2a-28 dp2 -p2 e-2P d42 - e28 dz2 + e2a-28 dl 

where a and fl  are functions of p only and (p ,  4, z ,  t )  correspond to 
ordinates respectively. Here 

g1, ,g22,g33,g44 = -e2a-2fi, -p2e-2P, -e2P,e2a-2fl 
g11,g22,g33,g44 = -e28-2a -p-2e28, -e-28,e28-2a 

(7) 

(8) 

xl, x2, x3, x4) co- 

(9) 
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For the metric (8) the mixed components of the Einstein tensor are given by 

G: = e-2"+Zp(zl/p-p:) 

G: = e-2Q+ZP(ul l  +p:)  
G: = -e- 

G4 4 -  - -G: = e-Za+28(8:- Rl/P). 

zP[2(Pl 1 + P l / P )  - (a1 1 + 831 
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(10) 

The suffixes 1, 11 after an unknown function denote the first- and second-order partial 
derivatives of the function with respect to p. 

In a static cylindrically symmetric situation, A ,  must have the form given by 

A ,  = (a, 050, cp). (1 1) 

But since FPy = 0, cp must be a constant. Using the values of g"" given in (9) we obtain 

= (-aeZP-2",0,0,cpe2P-2a) (12) 

A,A' = e2~-2a (q2-a2 ) .  (13) 

al/p-p: = $ K i ( ( P 2 + U Z )  (14) 

U 1 1 + p :  = * K A ( ( O Z - U 2 )  (15) 

-w,, + B l l P ) + ( ~ l l  +m = *K4cp2-aZ)  (16) 

Aaq = 0; (17) 

cp = 0. (18) 

B l l  +Bl/P = 0 (19) 

p =  m l n p + n  (20) 

so that 

Equations (6) ,  (7), (10)-(13) give rise to the following field equations : 

equation (17) gives 

Subtracting (16) from (15) leads to 

which gives 

where m and n are constants of integration. Adding (14) and (15) and using (18), we have 

E l l  + @ , l P  = 0, (71 \ 
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3.1. Non-static case 

In this case we assume a, 8, a and cp to be functions of p and t only. Here also we make 
such assumptions as before, for which we can use the Einstein field equations (7). 

The values of A, ,  A ,  and A,Ap will be given by the same expressions as in (1 l) ,  (12) 
and (13); but considering F14 = 0 we get an extra relation of the form 

in a and cp. 
The mixed components of the Einstein tensor are given by 

G: = e2P-22" (a l /p -P~- / j~ )  (26) 

(27) 

G: = - (28) 

G4 4 -  - -G: = e2P-2Q(p:+fi;-al/p) (29) 

(28184 - a 4 / p )  (30) 

(al 1 -a44 + f l :  -Pi) 
2"[2(b1 1 - P44 + Pl/P) + ('44 - "1 1 + Pt - f i t ) ]  

( 3 2  - e2P-2a 
2 -  

G i  = -G4 - -e2P-22 
1 -  

where the suffixes 4, 44 after an unknown function denote the first- and second-order 
partial derivatives of the function with respect to t .  

Equations (7),  (1 1)-( 13) and (26)-(30) yield the following field equations : 

Subtracting (32) from (33), we get 

b11 - 8 4 4 f / j l / P  = 
which gives 

,b = (c4t + c5) In p 

(35) 

(36) 
where c4 and c5 are constants. As (35) in conjunction with (32) yields (33), we ignore.(33) 
and treat (31), (32), (35) and (34) as the field equations. 

Since the nonlinear character of the equations involved makes it extremely difficult 
to find exact solutions, we shall consider only the following special cases : 

(i) a = 0, cp = constant (iv) a = constant, cp = 0 
(ii) a = 0, cp = cp(t) ( V I  a = 4 P X  cp = 0 

(iii) a = 0, cp = cp(p, t) 
Case (i). a = 0, cp = constant 
Under the above consideration the field equations (31), (32), (35) and (34) turn out to be 

(v i )  a = a(p, t ) ,  cp = 0. 

21/p - P: - P i  = $ K R c p 2  (37) 
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Using equations (36) and (37), we obtain 

a = $~E.cp~p’ + (c4t + cS)’ In p + )c: p2[(ln p)’ - In p + 9 + cg (41) 

cg being constant. The values of a and fl  given by (41) and (36) also satisfy (39) and (40). 

Case (ii). a = 0, cp = cp(t) 
The field equations in this case will be given by the same set of equations as (37)-(40). 
Equation (39) gives, as before, 

8 = (c4t  + cs) In p 

and proceeding exactly as in case (i), we get 

x = $ ~ i c p ’ p ’ + ( c ~ t t ~ , ) ’  In p++c:p’[(ln p)’- In p + + ] + c 8 .  

Substituting the above values of a and 8 in (38) yields 

c p c p 4 4 + d  = 0 
whence we have 

cp2 = A t +  B 

where A and Bare constants. Substituting these values ofa and 8 in equation (40) leads to 

cpcp4 = 0 
which gives 

cp = constant. 

Combining these above two values of cp produces the same situation as in case (i), namely 
a = 0 and cp = constant. 

Case (iii). a = 0, cp = cp(p, t )  
Proceeding exactly as above, we obtain the same values for a and p as in case (ii): 
cp turns out to be a constant in conformity with the relation (25). 

Case (iv). a = constant, qn = 0 
The field equations in this case will be given by 

2 - r  * 2 wP-8 :  -84 - 2KAa 
x11-x44+/3:-p: = - 9 K i a 2  

U4IP-28184 = 0. 

B = (c4t + e,) In p. 

811 -844  + 8l/P = 

From (44) we have 

Equations (42) and (46) give 

a = ~ ~ E . u ’ p ~ + ( c , t + c , ) ~  Inp++c:p’[(lnp)’- Inp++]+c , , .  (47) 

These values of a and fl  given by (47) and (46) satisfy (45), but U must be zero to satisfy 
(43). 
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Case (v). a = a@), cp = 0 
Here also the values of a and p will be given by expressions (47) and (46) and as in case (iv) 
equations (43) and (25) yield a = 0. 

Case (vi). a = a(p ,  t ) ,  cp = 0 
This case is similar to case (v) above. 

3.2. Static case with cosmological constant A 

Here we shall use the field equations with cosmological constant A. The appropriate 
equation is 

R,’ -$g,’R+Ag,’ = - K T ~ ’ .  (48) 

This yields the following field equations : 

e2p- zu(al/p - p:) + A = ~ K A  eZp- 23(cpz + a2)  (49) 

Adding (49) and (52) gives 

A = 0. (54) 

3.3. Non-static case with cosmological constant 

In this case where a, p, cp and a are functions of p and t only, (48) yields the following field 
equations : 

(55) 

(56) 

(57) 

(58) 

- ezp-2a(2fi1p4-a4/p) = dacp (59) 

A = 0. (60) 

(a l/p - p: - p i )  + A = ~ K A  e20 - 2 u ( c p 2  + a’) 

(a  - a,, + /?: - p i )  + A = )ICA e2s- 2u(cp2 - a 2 )  

( f l :  + p i  - a / p )  + A = - id  e20 - 2a  (cp2 + a 2 )  

e2fl - 2a  

e 2 p - 2 Q  

- eZP-za[2(/31 -p4, + /? , /p)  +(a,, - a1 +p i  --p:)] + A  = +d. e28-2a((p2 - a 2 )  
e2p - Za 

Adding (55) and (58), we obtain 

In the perspective of renewed interest in the cosmological constant A in astrophysics, it 
is interesting to note that, under the assumptions made above, the metric does not allow 
the cosmological constant A in both static and non-static cases as shown in (54) and (60) 
above. 

4. Geodesics of the field 

We discuss here the equations governing the motion of a test particle in the field. Our 
assumption of negligible outflow of charge remains valid. Since we have taken Fyy = 0 
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to obtain the solutions of the field equations, the geodesic of a particle will be given by the 
equations 

In our case, for i = 2,3,4 we get the equations of motion as 

where dot denotes differentiation with respect to s. On integration, equations (62)-(64) 
give respectively 

where A,, A,, A, are constants of integration. 

metric. This gives 
In order to find out the first equation of the set for i = 1 and involving p we use the 

4.1. Geodesic for the static solution 

In this section we give the expressions of the velocities in different directions and interpret 
the equations obtained. The values of U and /3 used in this case are given by (22) and (20). 

Equations (65) and (67) give 

d 4  A,  e'' A ,  e'' 
dt A,p2 A, p 2  

- - - - - e2c2 In P - _ -  

Taking c2 = 1, we obtain 

constant. d 4  _ -  - A l e c 3  = 
dt A, 

Similarly, 

(69) 

e - A 2  2 c j - 4 n  2 - 4 m  - -e  P .  dt A, 
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= 1-k:-kip2-4m- k3 2 P 2 - 2 m  (71) 

where k,, k2 ,  and k, are new constants replacing (A1/A3) e'', (AJA3)  ec3-2n and 
(l/A3) eC3-" respectively. 

For m = $, (71) reduces to 

This gives, on integration, 

l-k$-k;-k:p = gk: t+ki )  
where k, is a constant. From (73) we have, on differentiation, 

(72) 

(73) 

Combining (69), (70) and (71) results in 

where V,, V ,  and V+ represent respectively the velocity along the radius, the velocity in 
the direction of z and the rate of describing the angle 4. 

The radial velocity of the particle is not constant but depends on p,  the distance 
from the axis of symmetry. Equation (74) shows that there exists a constant force acting 
on the test particle and tending towards the central axis. Thus the particle, free to move, 
will execute a helical path, taking the axis of symmetry as the axis of the helix. The helix 
will taper at the ends but the radial velocity will never be equal to zero unless k$ + k: = 1. 

This form of helical path may throw some light in explaining the formation of spiral 
nebulae seen in the universe. 

4.2. Geodesic for the non-static solution 

In this case the values of a and are given by equations (41) and (36). We consider here 
the velocities of the particle in different directions when 4 = constant. Equations (65)- 
(68) turn out to be 

d 4  - = 0  
ds 
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Equations (78) and (79) yield 
2 2 a - 4 8 - I e 2 a - 2 8  

($)2 = l - z e  
'4: 

A: 2 

'43 
= 1 - - p  exp[2(c,t+c,)(c4t+c,-2)] 

x expj4ki.cp2p2+c:p2[(lnp)'- In p+4]+2c8} 

-7p2 exp[2(c,t+c,)(c4t+c5- 111 

x exp{+kI,rp2p2 +c:p2[(ln p)2  - In p ++] + 2c8} 

1 

' 4 3  

and 
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(79) 

exp{+khp2p2 + c:p2[(ln p)' -In p ++] + k,}. (81) - dz =-  A 2  p2(c41 + C 5 ) ( C 4 1  + c 5 - 2 )  

dt A, 

Equations (80) and (81) give the velocity of the particle along the radius and along the 
direction of the z axis respectively. 

5. Regularity of the solutions 

Here we study the regularity of the solutions and we see that the solutions are not every- 
where regular. Following Bonnor (1957) we define a non-singular field as one in which 
every point (including points at spatial and temporal infinity) is non-singular. A point 
P is non-singular if at this point natural coordinates can be introduced by means of a 
coordinate transformation for which a set of sufficient conditions is : 

(i) g, the determinant of the metric tensor g,,, is nonzero; 

(iii) the second derivatives of g,, are finite and continuous at P. 
(ii) g,, and their first derivatives are finite and continuous at P ;  (82) 

To avoid the coordinate singularity we transform the metric (8) to the pseudo-Cartesian 
coordinates by setting 

x = p cos 4, y = p sin 4, z = z, t = t. 

By this transformation the metric (8) becomes 
ds2 = -e2P dZ2 - p - 2 [ ( x 2  e2z-28+y2 e-2P) dx2 +(y' e2a-2P+x2 e-28) dy2] 

+2xy(e-2PF e21-20 ) d x d y +  e2a-2Pdt2.  (83) 
I t  can now be easily checked that the solutions given by (19), (22) and (36), (41) do  not 
satisfy the condition (82) of regularity and as such the solutions are not everywhere 
regular. In fact, all of them are singular along the z axis and also at infinity. 

We shall now discuss whether the solutions represent the field of a line-mass. For 
solutions (19) and (22), 

(84) constant x p 2 ( c l  - '"1. g,, = - g l l  = e2z-28 = 
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For solutions (36) and (41) and for t = constant hypersurface, 

g,, -g, , = e z ~ - ~ P  

= constant x ph exp(c:pz[(ln p)* -In p ++I} + . . . + O ( p ’ ) )  (85) 

where h is a constant. In both cases expressions (84) and (85) do  not represent the field of a 
line-mass. 
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